Influence of crystal structure on the perpendicular magnetic anisotropy of an epitaxial CoPt alloy

J. C. A. Huang, a) A. C. Hsu, and Y. H. Lee

Physics Department, National Cheng-Kung University, Tainan 70101, Taiwan, Republic of China

T. H. Wu

Department of Humanities and Science, National Yunlin University of Science and Technology, Touliu, Taiwan, Republic of China

C. H. Lee

Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan, Republic of China

By molecular beam epitaxy CoPt 1.1 alloys were simultaneously prepared on Mo seeding layers on Al₂O₃ (11–20), (1–102), and (1–100) substrates, respectively. Distinct crystal structures and chemical ordering of the CoPt 1.1 alloys were observed for substrate temperatures of 300 and 400 °C. Structural and magnetic observations for CoPt 1.1 alloys grown on separate sapphire substrates show that the appearance of the ordered L₁₁ (111) phase results in an enhancement of the perpendicular magnetic anisotropy and Kerr rotations in the CoPt alloys. © 1999 American Institute of Physics.

Co–Pt alloys and multilayers (MLs) with large perpendicular magnetic anisotropy (PMA) and enhanced Kerr rotations have attracted considerable interest both for basic research and for the development of future magneto-optical recording media. CoPt alloys are more promising for application in some aspects of easy manufacturing and better chemical stability in comparison to Co–Pt MLs. In an ordered CoPt alloy the reduced thickness of the Co layer (to a single monolayer) together with the symmetry breaking in the Co–Pt interfaces, similar to that of the Co/Pt MLs, can result in a change of preferred Co magnetization from in-plane to perpendicular alignment. As a consequence, the PMA and Kerr rotations of CoPt alloys are often very sensitive to the crystal structure and chemical ordering.

A particularly interesting case is the Co–Pt alloy with a 1:1 ratio where a distinct ordered structure, an L₁₀ or L₁₁ (Ref. 5) type phase, has been established. The L₁₁ phase is a metastable structure because it does not exist in the bulk phase diagram. Schematic diagrams of the L₁₀ and L₁₁ structures are shown in Figs. 1(a) and 1(b) for the convenience of the reader.

In this article, we report the influence of crystal orientation and chemical ordering on the PMA effect in epitaxial CoPtₓ (x ~ 1.1) alloys. By employing a separate underlying template and varying the growth temperature, the crystal structure and PMA effect have been studied. The structural and magnetic observations of CoPt alloys grown on the distinct substrate show that the appearance of an ordered L₁₁ (111) phase tends to increase the PMA and Kerr rotation of the CoPt alloys.

The CoPtₓ alloy films were prepared by a Vacuum Product molecular beam epitaxy (MBE) (MBE-930) system. Details of the chamber in which crystal growth took place are provided elsewhere. CoPtₓ alloys of ~500 Å were simultaneously grown on 200 Å Mo seeding layers on epitaxial grade Al₂O₃ (11–20), Al₂O₃ (1–102), and Al₂O₃ (1–100) substrates. To enable the growth of high-quality CoPtₓ alloy films, the sapphire substrates were chemically pre-cleaned and then introduced into the growth chamber and outgassed at ~1050 °C for 1 h under ultrahigh vacuum conditions before the initial deposition. The base pressure of the MBE system was of about 2×10⁻¹⁰ Torr. Pure (99.99%) Co and Pt materials were evaporated from a separate e-beam source. During deposition of the CoPt alloys, the growth pressures were controlled below 5×10⁻⁹ Torr, and the deposition rates were ~0.2–0.3 Å/s.

FIG. 1. Schematic diagrams showing the lattice geometry of the (a) L₁₀ and (b) L₁₁ structures of the CoPt alloy.

a) Electronic mail: jcahuang@mail.ncku.edu.tw
To retain sample uniformity the sample holder was rotated at a constant speed of \(\sim 30 \) rpm. The thickness and the deposition rates of the films were calibrated by a quartz crystal monitor located very close to the sample holder. The growth (substrate) temperature was kept at 900 °C for the Mo seeding layers, and was 300 and 400 °C for the CoPt1.1 alloys that followed. No postannealing treatment was employed in this work.

The composition of the CoPt1.1 alloy was determined by an Auger-sputtering technique. The crystal structure was measured by reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD). The magnetic properties were investigated by the polar magneto-optical Kerr effect (PMOKE) and the extraordinary Hall effect (EHE). The PMOKE and EHE measurements were carried out at room temperature in a magnetic field \(H \) up to 15 kOe. The penetration depth of the He–Ne laser for the PMOKE experiment was \(\sim 200 \) Å. The results of EHE measurements are in good agreement with the PMOKE studies; the latter are presented in this article.

On an Al\(_2\)O\(_3\) (110–20) substrate a Mo seeding layer was grown as a disordered face-centered-cubic (fcc) (111) phase at 300 °C, as shown by the XRD spectra shown Fig. 2(a). However, a (partially) ordered \(L_1 \) (111) phase of CoPt1.1 was established at 400 °C, as indicated by the XRD spectrum shown in Fig. 2(b). Note that the appearance of a superlattice peak at 2\(\theta \sim 20°–21° \) [indexed as \(S_1 \) in Fig. 2(a)] suggests that the diffraction peak corresponds to a (partially) ordered \(L_1 \) (111) phase, similar to that reported by Itawa et al. recently. In the \(L_1 \) (111) [see Fig. 1(a)] or the fcc (111) phase there is no modulated superstructure along the (111) direction. For the fcc (111) and \(L_1 \) (111) CoPt1.1 alloys the polar Kerr coercivity and squareness \((M_r/M_s) \) are 0.2 kOe (0.12) and 1.1 kOe (0.97), respectively, as shown in Figs. 2(c) and 2(d). The Kerr rotations of the fcc (111) and \(L_1 \) (111) samples are 0.28° and 0.39°, respectively. The \(L_1 \) (111) phase was stabilized at lower temperature on a MgO(111) substrate\(^5\) and the other substrate (Al\(_2\)O\(_3\) (1120)) discussed below, indicating that this metastable phase is rather sensitive to the underlying template.

On the Al\(_2\)O\(_3\) (1–102) substrate the Mo seeding layer was grown as a (100) structure. The subsequent CoPt1.1 alloys were grown as an \(L_1 \) (111) + \(L_1 \) (100) structure at 300 °C and mainly as a slightly ordered \(L_1 \) (100) phase at 400 °C, as shown in Figs. 3(a) and 3(b). For the \(L_1 \) (111) + \(L_1 \) (100) sample the polar coercivity and squareness are \(\sim 2.4 \) kOe and 0.38; they are 0.9 kOe and 0.21, for the \(L_1 \) (100) sample, as shown in Figs. 3(c) and 3(d). The Kerr rotations of the \(L_1 \) (111) + \(L_1 \) (100) and \(L_1 \) (111) samples are 0.31° and 0.20°, respectively. Although the \(L_1 \) (100) phase is also partially ordered [indexed as \(S_0 \) in Figs. 3(a) and 3(b)], it does not seem to strengthen the PMA effect.

In addition, on the Al\(_2\)O\(_3\) (1–100) substrate the Mo seeding layer was grown as a (211) plane. Subsequent CoPt1.1 alloys were grown as the \(L_1 \) (111) + hcp (1–100) phase at 300 °C and mainly the hcp (1–100) phase at 400 °C, as displayed in Figs. 4(a) and 4(b). For the \(L_1 \) (111) + hcp (1–100) sample the polar coercivity and squareness are \(\sim 2.3 \) kOe and 0.33; they are 1.9 kOe and 0.29 for the hcp (1–100) sample. The Kerr rotations of the \(L_1 \) (111) + hcp (1–100) and hcp (1–100) samples are 0.40° and 0.36°, respectively. Again, the emergence of the \(L_1 \) (111) phase has a tendency to magnify the PMA effect.

FIG. 2. (a), (b) X-ray diffraction spectra and (c), (d) normalized Kerr rotation loops scanned from 500 Å CoPt\(_{1.1}\)/200 Å Mo/Al\(_2\)O\(_3\) (11–20).

FIG. 3. (a), (b) X-ray diffraction spectra and (c), (d) normalized Kerr rotation loops scanned from 550 Å CoPt\(_{1.1}\)/200 Å Mo/Al\(_2\)O\(_3\) (1–102).
In summary, we have studied CoPt1.1 alloys prepared on Mo seeding layers on Al$_2$O$_3$ (11–20), (1–102), and (1–100) substrates by MBE. Distinct crystal structures and chemical ordering of the CoPt1.1 alloys were observed for substrate temperatures of 300 and 400 °C. On the Mo(100)/Al$_2$O$_3$(1–102) and Mo(211)/Al$_2$O$_3$(1–100) templates the $L1_1(111)$ phase (mixed with the other phase) appears at ~300 °C and deteriorates greatly at 400 °C. In contrast, on the Mo(110)/Al$_2$O$_3$(11–20) template the $L1_1(111)$ phase is much purer and stronger at 400 °C, and becomes weaker at 300 °C. The observations of CoPt$_{1.1}$ alloys on distinct Mo seeding layers (and sapphire substrates) show that the appearance of the ordered $L1_1(111)$ phase results in an enhancement of the perpendicular magnetic anisotropy and the Kerr rotations. We have demonstrated here that there is a strong correlation between the crystal structure and perpendicular magnetic anisotropy in Co–Pt alloy systems.

The authors are grateful for the financial support by the Republic of China’s National Science Council under Grant Nos. 87-2112-M-006-014 and 87-2732-M-006-001.

14. The PMA effects of the 300 and 400 °C as-deposited CoPt alloys are better than those grown at 200 and 500 °C.