Pt thickness and buffer layer effects on the structure and magnetism of Co/Pt multilayers

J.C.A. Huanga,\textasteriskcentered*, M.M. Chena, C.H. Leeb, T.H. Wuc, J.C. Wud, C.M. Fue

aDepartment of Physics, National Cheng-Kung University, Ta-Hsueh Road, \#1, Tainan 701, Taiwan
bDepartment of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan
cDepartment of Humanities and Science, National Yunlin University of Science and Technology, Touliu, Taiwan
dDepartment of Physics, National Changhua University of Education, Changhua, Taiwan
eDepartment of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan

Abstract

[Co(3 Å)/Pt(\(t_{\text{Pt}}\))]\textsubscript{30} (1 1 1) multilayers were prepared by molecular beam epitaxy. X-ray diffractions show clear satellite peaks around the Co/Pt fundamental peak, indicative of a good modulated structure for all Co/Pt multilayers. The optimal perpendicular magnetic properties were obtained for 6 Å < \(t_{\text{Pt}}\) < 10 Å. The effect of Pt buffer (\(B_{\text{Pt}}\)) upon the magnetic property of [Co(3 Å)/Pt(10 Å)]\textsubscript{30}/Pt(\(B_{\text{Pt}}\)) is also studied. X-ray diffractions reveal that the superlattice peaks of [Co(3 Å)/Pt(10 Å)]\textsubscript{30}/Pt(\(B_{\text{Pt}}\)) increase with increasing \(B_{\text{Pt}}\). The Kerr rotations and polar coercivity \(H_{c}\) increase with increase in \(B_{\text{Pt}}\) but both saturate at about \(B_{\text{Pt}} = 200\) Å. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Multilayers; Molecular beam epitaxy; Perpendicular magnetic anisotropy; Kerr rotations

1. Introduction

Co/Pt multilayers with large perpendicular magnetic anisotropy (PMA) and enhanced Kerr rotations have received much attention in both basic research and application in high-density magnetic and magneto-optical (MO) recording \cite{1,2}. Compared with the RE–TM alloys currently used in commercial MO disks, the Co/Pt multilayers are attractive for their superior corrosion resistance and large Kerr rotations at short wavelength \cite{3}. Previously, we reported \cite{4} the influence of Co thickness and crystal orientation on the magneto-optical properties of [Co(\(t_{\text{Co}}\))/Pt(10 Å)]\textsubscript{30} multilayers \cite{4}. For these multilayers, the best PMA effect was obtained with \(t_{\text{Co}}\) of about 2.5–4 Å and (1 1 1) as the growth orientation. In an effort to optimize the PMA and MO properties of the Co/Pt multilayers, we investigate here, the influence of Pt thickness (\(t_{\text{Pt}} = 4, 6, 8, 10\) and 12 Å) in the multilayer and in the buffer layer (\(B_{\text{Pt}}\)) upon the PMA and Kerr rotations of the [Co(3 Å)/Pt(10 Å)]\textsubscript{30}/Pt(\(B_{\text{Pt}}\)) multilayers.

2. Sample preparations and characterizations

The [Co(3 Å)/Pt(\(t_{\text{Pt}}\))]\textsubscript{30} multilayers were prepared by a vacuum-product-made molecular beam epitaxy system. Details of the chamber in which crystal growth took place are provided elsewhere \cite{4,5}. These multilayers were grown on Pt seeding layer on epitaxial grade Al\textsubscript{2}O\textsubscript{3} (1 1 2 0) substrate. The Pt seeding layer and the subsequent Co/Pt multilayers were grown at optimal temperatures of 400°C and 100°C, respectively. The crystal structure and epitaxial relations of the Co/Pt multilayers were studied by reflection high-energy electron diffraction (RHEED) and X-ray diffraction (XRD). Magnetic property was investigated by polar magneto-optical Kerr effect (PMOKE) and a superconducting-quantum-interference-device (SQUID) magnetometer.

*Corresponding author. Tel.: +886-06-2757575; fax: +886-06-2747995.
E-mail address: jcahuang@mail.ncku.edu.tw (J.C.A. Huang).

0304-8853/02/$-see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0304-8853(01)00651-5
3. Results and discussion

On $\text{Al}_2\text{O}_3(11\overline{2}0)$ substrate, the Pt seeding layer and the subsequent Co/Pt MLs were grown as (111) single crystal films, as indicated by the RHEED and XRD observations. The 3D epitaxial relations of the Co/Pt multilayers, Pt seeding layer and sapphire substrate was determined as $\text{Co/Pt(111)}||\text{Pt(111)}||\text{Al}_2\text{O}_3(11\overline{2}0)$, $\text{Co/Pt(110)}||\text{Pt(110)}||\text{Al}_2\text{O}_3(000\overline{1})$, and $\text{Co/Pt(11\overline{2})}||\text{Pt(1\overline{1}2)}||\text{Al}_2\text{O}_3(\overline{1}10\overline{0})$. Fig. 1(a) shows the XRD spectra of the $[\text{Co}(3\text{A})/\text{Pt}(t_{\text{Pt}})]_{30}$ multilayers. As t_{Pt} increases, the fundamental peak of the multilayer (indicated as Co/Pt(111) in Fig. 1(a)) shifts towards the Pt(111) peak, designating the increase of average lattice spacing for the Co/Pt multilayer. In addition, the XRD spectra show clear satellite peaks around the Co/Pt fundamental peak (indexed as $-S_1$ and $+S_1$), indicative of well-modulating structure. Lattice strain up to 2.8% of the Co/Pt multilayers had been measured [6] by careful XRD studies using a synchrotron radiation source [6].

![X-ray diffraction spectra](image)

Fig. 1. (a) X-ray diffraction spectra and (b) PMOKE hysteresis loops of $[\text{Co}(3\text{A})/\text{Pt}(t_{\text{Pt}})]_{30}$ multilayers grown on 200 Å Pt on $\text{Al}_2\text{O}_3(11\overline{2}0)$ substrate with $t_{\text{Pt}} = 4, 6, 8, 10$ and 12 Å. Note that the Laue oscillation peaks (30–37° in (a)) are due to the smoothness of both the sapphire substrate and the Pt seeding layer.

By PMOKE, we have also studied the dependence of PMA and Kerr rotations of $[\text{Co}(3\text{A})/\text{Pt}(t_{\text{Pt}})]_{30}$ multilayers upon the Pt thickness ($t_{\text{Pt}} = 4, 6, 8, 10$ and 12 Å) for a fixed Co thickness at 3 Å. The best polar coercivity H_c (6.3 kOe) of the $[\text{Co}(3\text{A})/\text{Pt}(t_{\text{Pt}})]_{30}$ multilayers occurs at $t_{\text{Pt}} \sim 10$ Å, as shown in Fig. 1(b). The polar H_c remains >3 kOe for $t_{\text{Pt}} > 6$ Å, and decreases very dramatically (<1 kOe) for $t_{\text{Pt}} < 4$ Å. In-plane magnetization of the $[\text{Co}(3\text{A})/\text{Pt}(t_{\text{Pt}})]_{30}$ multilayers was observed for $t_{\text{Pt}} = 2$ Å. On the other hand, the Kerr rotations (θ_K) increase slightly with decrease in the Pt thickness in the multilayers ($\theta_K \sim 0.22–0.25^\circ$ for $t_{\text{Pt}} > 10$ Å, $\theta_K \sim 0.28–0.32^\circ$ for $t_{\text{Pt}} = 8$ and 6 Å, and $\theta_K \sim 0.38^\circ$ for $t_{\text{Pt}} = 4$ Å). For optimal Kerr and PMA effects, therefore, the best range of the Co and Pt layer thickness in the $\text{Co/Pt}(t_{\text{Pt}})$ multilayers was determined as 2.5 Å $< t_{\text{Co}} < 3.5$ Å and 6 Å $< t_{\text{Pt}} < 10$ Å, respectively.

We have also studied the influence of Pt buffer layer thickness (B_{Pt}) upon the magnetic property of $[\text{Co}(3\text{A})/\text{Pt(10A)}]_{30}/\text{Pt}(B_{\text{Pt}})$ multilayers. X-ray diffraction (θ–2θ) scans reveal that the fundamental and satellite peaks of $[\text{Co}(3\text{A})/\text{Pt(10A)}]_{30}/\text{Pt}(B_{\text{Pt}})$ improve with the increasing of B_{Pt} (from 0 to 500 Å), as shown in Fig. 2(a). A similar

![X-ray diffraction spectra](image)

Fig. 2. (a) X-ray diffraction spectra and (b) PMOKE hysteresis loops of $[\text{Co}(3\text{A})/\text{Pt(3A)}]_{10}$ multilayers grown on Pt(B_{Pt}) buffer layer with B_{Pt} ranging from 0 to 500 Å.
trend was found in X-ray rocking curve scans and reflectivity measurements using synchrotron radiation source also [6]. For the magnetic property, the PMOKE studies indicate that Kerr rotations and polar coercivity \(H_c \) increase with the increase in \(B_{Pt} \) but both saturate at about \(B_{Pt} = 200 \) Å, as shown in Fig. 2(b). It is suggested that the 200 Å (Pt) buffer layer is sufficient for the Co/Pt multilayers.

Previously, we have studied the importance of using Pt and/or Mo seeding layers [7,8] on the structure and magnetism of the Co/Pt multilayer. We have also reported the effects of growth orientation and Co thickness on the PMA of Co/Pt multilayer [4]. From the present investigation, we further conclude that the optimal thickness parameters for the growth of \([\text{Co}(t_{Co})/\text{Pt}(t_{Pt})]_{30}/\text{Pt}(B_{Pt})\) multilayers are \(2.5 - 3.5 \) Å < \(t_{Co} \) < \(6 \) Å < \(t_{Pt} \) < \(10 \) Å, and \(B_{Pt} \) about 200 Å. Finally, we point out that the Co–Pt interfacial strain is crucial for the perpendicular magnetization of the Co/Pt multilayers. Details of structural studies using synchrotron radiation X-ray will be reported in a further publication.

Acknowledgements

We are grateful for the financial support by the ROC NSC under grant No. 89-2112-M-006-037.

References