Chapter 2: Gaussian Optics - paraxial optics
Mainly we will discuss
- Analysis based on paraxial optics
- Simple ray tracing
- Aperture and stop
- homeworks
Analysis based on paraxial optics

- Paraxial approximation
- Cardinal points
- Paraxial ray tracing
 - YNU ray tracing
 - YUI ray tracing
- Matrix Optics
- Paraxial constants
- Image equations
- Specification of conjugate distances
- Lens setup
Apertures and Pupils

- Radiometric concepts and terminology
 - Radiance conservation theorem
 - Irradiance by a flat circular source
 - Cos4 law
 - Vigentting
 - Computation of irradiance

- Stops and Pupils
 - Specifying aperture and field of view

- Optical System Layout
 - Thin lens
 - Photographic objective
 - Magnifier
 - Telescope
 - Relay system
 - Telecentric lens

- Specifying lens apertures
 - Special apertures
• Centered optical system
 – Optical axis
 – Basic law
 \[\sin \theta = \sin \theta' \Rightarrow n \theta = n' \theta' \]
 – Plane of incidence
 • Formed by incident and refracted rays
 – Merdinal ray (子午線)
 • On the plane of incidence
 • with optical axis
 – Skew ray (歪斜線)
 • Optical axis is not on the plane of incidence
Approximation: a quick way for ray tracing

- Now let us take a non-flat surface

\[n'e' = n'e + G \]

\[G = n'(p \cdot e) - n(p \cdot e) \]

\[= n'\cos I' - n \cos I \]
Cause of aberration

- Aberration: the difference between real ray and paraxial ray
Cardinal point (基點)

• Using cardinal points to characterize the performance of paraxial optics
 – Object space
 – Image space

• Two points are enough to determine the position of image

- Focal points
- Principal points
- Nodal points
Paraxial optical system and aplanatic optical system

P, P': principal points (O and O' off-axis where P and P' on axis)
Paraxial optical system and aplanatic optical system

OSLO used aplanatic Ray aiming

principal planes changes to principal surface
Paraxial optical system and aplanatic optical system

- For an aplanatic lens, the effective refracting surface for ray coming from infinity is a sphere centered on the second focal point
 - Most real lens more closely resemble aplanatic system than paraxial systems
- Note: an aplanatic lens obeys the Abbe sine condition. This condition was put into the calculation in common ray-tracing and thus to achieve an aplanatic ray aiming (instead of paraxial ray aiming).
Nodal points: without angular deviation
Unit positive angular magnification
Once the locations of the cardinal points of a system are known, it is straightforward to find how the system transforms rays from object to image space.
Paraxial ray tracing

\[
u = \frac{y - y_{-}}{t} (y = y_{-} + tu)\]

\[I = U + \theta; I' = U' + \theta\]

\[i = \frac{y}{r} + u = yc + u\]

\[i' = \frac{y}{r} + u' = yc + u'\]

\[n_i = n'i'\]

\[u' = \frac{nu - y\phi}{n'}\]

power \(\phi' = c(n' - n) \)
YNU ray tracing

The idea of "SOLVE" is illustrated here with equations and tables.

Equations

- \(n'u' = nu - y\phi \)
- \(y = y_0 + \frac{t}{n} (nu) \)

Tables

Table 1:

<table>
<thead>
<tr>
<th>c</th>
<th>t</th>
<th>n</th>
<th>-(\phi)</th>
<th>(u/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>2</td>
<td>1.1</td>
<td>.05168</td>
<td>.13186</td>
</tr>
<tr>
<td>-1</td>
<td>.05168</td>
<td>.00998</td>
<td>0.0</td>
<td>.03093</td>
</tr>
<tr>
<td>0.0</td>
<td>.0</td>
<td>.99319</td>
<td>.99189</td>
<td>.00003</td>
</tr>
<tr>
<td>nu</td>
<td>1.0</td>
<td>1.0</td>
<td>.99319</td>
<td>.99189</td>
</tr>
<tr>
<td>nu</td>
<td>0.0</td>
<td>.0</td>
<td>.99319</td>
<td>.99189</td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>c</th>
<th>t</th>
<th>n</th>
<th>-(\phi)</th>
<th>(u/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>2</td>
<td>1.1</td>
<td>.05168</td>
<td>.13186</td>
</tr>
<tr>
<td>-1</td>
<td>.05168</td>
<td>.00998</td>
<td>0.0</td>
<td>.03093</td>
</tr>
<tr>
<td>0.0</td>
<td>.0</td>
<td>.99319</td>
<td>.99189</td>
<td>.00003</td>
</tr>
<tr>
<td>nu</td>
<td>1.0</td>
<td>1.0</td>
<td>.99319</td>
<td>.99189</td>
</tr>
<tr>
<td>nu</td>
<td>0.0</td>
<td>.0</td>
<td>.99319</td>
<td>.99189</td>
</tr>
</tbody>
</table>

Calculations

- \(c = \frac{n'u' - nu}{y(n - n')} \) (Angle solve)
- \(t = \frac{y - y_0}{u} \) (Height solve)
• Usually in ray tracing, we need to check two rays
 – (1) so called “a ray”: axial rays (marginal paraxial ray)
 – (2) so called “b ray”: principal ray (chief ray)
 – In last viewgraph, the subscripts of y (a, b) mean a ray and b ray correspondingly.
YUI ray tracing

\[
y = y_0 + tu
\]
\[
i = u + yc
\]
\[
u' = u + \left(\frac{n}{n'} - 1\right)i
\]

In OSLO use “pxt all” to display this data.

<table>
<thead>
<tr>
<th>SRF</th>
<th>PY</th>
<th>PU</th>
<th>PI</th>
<th>PYC</th>
<th>PUC</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>1.0000e-20</td>
<td>1.0000e-20</td>
<td>-1.0000e+20</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>1</td>
<td>1.00000</td>
<td>-0.03407</td>
<td>0.10000</td>
<td>--</td>
<td>0.65928</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>0.99319</td>
<td>-0.02584</td>
<td>-0.13339</td>
<td>0.13186</td>
<td>0.61940</td>
<td>0.64610</td>
</tr>
<tr>
<td>3</td>
<td>0.99189</td>
<td>-0.04177</td>
<td>-0.02584</td>
<td>0.16283</td>
<td>1.00132</td>
<td>0.61940</td>
</tr>
<tr>
<td>4</td>
<td>2.8940e-05</td>
<td>-0.04177</td>
<td>-0.04177</td>
<td>23.94108</td>
<td>1.00132</td>
<td>1.00132</td>
</tr>
</tbody>
</table>
homework

- Using visual C++ or the other computer language to implement the ynu ray tracing and yui ray tracing
- And then, calculate a case of achromat lens
- Using OSLO LT, and “pxt all” command to compare your result

<table>
<thead>
<tr>
<th>Material</th>
<th><radius value></th>
<th><thickness value></th>
<th><diameter></th>
<th>Note: unit in inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAK-1</td>
<td>12.8018</td>
<td>0.434</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>SF-8</td>
<td>-9.0623</td>
<td>0.321</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>AIR</td>
<td>-37.6553</td>
<td>19.631</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>Cemented achromat</td>
<td>F-number: f/6</td>
<td>Focal length: 20 in</td>
<td>Note: unit in inch</td>
<td></td>
</tr>
</tbody>
</table>
Matrix Optics

Translation matrix

\[
\begin{bmatrix}
y_j \\
n_j u_j
\end{bmatrix} =
\begin{bmatrix}
1 & t_j / n_j \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
y_{j-1} \\
n_j u_j
\end{bmatrix}
\]

Refraction matrix

\[
\begin{bmatrix}
y_j \\
n_j' u_j'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
-\phi & 1
\end{bmatrix}
\begin{bmatrix}
y_j \\
n_j u_j
\end{bmatrix}
\]
Transfer Matrix

\[
\begin{bmatrix}
 y_j \\
 n'_j u'_j \\
\end{bmatrix}
=
\begin{bmatrix}
 A & B \\
 C & D \\
\end{bmatrix}
\begin{bmatrix}
 y_1 \\
 n_1 u_1 \\
\end{bmatrix}
\]

Determinant L

\[
L_{ab} = n_1 \left(y_{b1} u_{a1} - y_{a1} u_{b1} \right)
\]

Largange invariant

(again, here subscripts a and b correspond a ray and b ray)
But you do not have to use a ray and b ray to have a Lagrange invariant
Lagrange’s Law

• How to calculate the magnification?
 – $m = h'/h$
 – Ray tracing (not good)

• Using Lagrange invariant
 – $L_{ab} = n_1 y_{bo} u_{a1} = h n_1 u_{a1}$ (axial ray, zero height in object space)
 – $L_{ab} = n_k y_{bk} u_{ak} = h' n_k u_{ak}$ (axial ray, zero height on the image plane)
 – Lagrange invariant $h n_1 u_{a1} = h' n_k u_{ak}$
 – $M = h'/h = n_1 u_{a1} / n_k u_{ak}$
Paraxial Constants

- OSLO computes seven numbers (paraxial constants)
 - Effective focal length (EFL)
 - Lagrange (paraxial) invariant (PIV)
 - Lateral magnification (TMAG)
 - Gaussian image height (GIH)
 - Numerical aperture (NA)
 - F-number (FNB)
 - Petzval radius (PTZRAD)

 \[
 f' = -\frac{eh}{u^e + u^a h}
 \]

 \[
 PIV = L_{ab} = hnu^a
 \]

 \[
 TMAG = m = \frac{nu^a}{n' u^a}
 \]

 \[
 GIH = h' = \frac{nu^a}{n' u^a} h
 \]

 \[
 NA = \frac{NAO}{TMAG}
 \]

 \[
 NAO = n \sin U = \frac{nu^a}{\sqrt{1 + u^2_a}}
 \]

 - The radius of curvature of the surface on which an image of an extended plan object would be formed (not a paraxial quantity, actually)
So, in designing a code for optical system design, at least

- You need to know how to implement ynu and yui ray tracing \textit{(this is simple)}
- You need to know how to put Abbe sine conditions to have an aplanatic ray aiming \textit{(this is simple)}
- You need to know how to use Lagrange invariant to calculate fast \textit{(this is simple)}
- At least, seven paraxial constants should be implemented \textit{(this is simple)}
- You need to know how to implement “Solve” and “Pickup” to meet some design requirement and optimization needs \textit{(this is somehow difficult; you need to consult “numerical recipe”. But, it can be done.)}
Specification of conjugate distance

In OSLO, you can specify object and image distance referred to cardinal points, rather than physical lens surfaces.
Lens Setup

• In OSLO
 – Solve
 • Axial ray height solve (PY solve)
 – To specify the last thickness (the one before the image surface)
 • Chief ray height solve (PYC solve)
 – Final surface becomes the paraxial exit pupil
 • Angle solve
 – To constrain the f-number
 – Pickup
 • Force some surfaces to follow a fixing setting according to some specific surface (lens)