原子在近十年來有了嶄新的發展。諾貝爾物理獎在1997年頒發給科恩唐努吉（C. Cohen-Tannoudji）、朱棣文（Steven. Chu）與菲利普斯（W. D. Phillips）以表揚他們對發展雷射冷凝與凝聚上的貢獻，2001年則頒發給凱特力（Wolfgang Ketterle）、柯內爾（Eric A. Cornell）與魏曼（Carl E. Wieman）來彰顯他們在鹼金屬氣態實現了玻色—愛因斯坦凝聚體（Bose-Einstein Condensation：BEC）。低溫原子與超冷原子物理也因為新的實驗技術，在研究上成果而有爆炸性的成長。當原子在1 μK（百萬分之一的絕對溫度）時，其能量是足夠低的，使得原子的deBroglie波動性變得明顯。這樣具波動性的原子，就可以用原子光學元件加以控制（例如給原子的透鏡、鏡子、光柵、波導和干涉儀），就如同我們做光波實驗一樣。

最近有一範疇的研究特別令我們振奮，那就是整合原子光學元件為一體來將儲存、操作和控制原子的交互作用放在一微結構上的一個原子芯片[1-2]，能夠用細微的載電流線結構或永久磁鐵的結構來產生控制原子的微小磁阱。最近的實驗試著直接將BEC放在原子芯片上來實現原子分光與原子干涉儀，這樣的裝置提供了一個新層次的測量靈敏度，也被建議為一個可能用來處理量子資訊運算的工具[3]。在這篇文章中，我們簡單地回顧一下原子芯片這個領域的重要發展，同時也描述一下我們Sussex研究群在原子芯片實驗上的成果。

原子的磁矩是μB，因而那些原子的磁矩與磁場的方向成方向的，我們稱之為弱場搜尋，因為他們的交互作用能量在弱場的地方也是最小的。這些原子可以被局部磁場的極小值所引導或侷限，如此便提供了一個簡便的方法來操控原子。然而原子的這種交互作用下的能量尺度，遠小於原子在室溫熱平衡下的能量，只有非常冷的原子（T<1 mK）才能用這種方法操控。

利用最近發明的雷射冷凝和磁光阱（MOT）技術，產生10^9個原子，溫度在50 μK或更低已經是很平常的事了。如此提供了一個非常重要超冷原子源，可以被適當大小的磁場來侷限它們。第一次證實原子導管是可行的，就是引導自磁光阱中釋放出的原子，早期有關這方面的研究工作可以參考[1]。

原子芯片的重要發展是鏡面磁光阱（mirror MOT）[4]的發明，鏡面磁光阱提供了一個簡易的方法，可直接在表面上準備和載入冷原子雲團。一個鏡面磁光阱使用了和一般六道光束的磁光阱相同的雷射光和磁四極組合，不同的是其中有兩道雷射光束是由一鏡面反射而形成的，原子就被侷限在靠近表面入射光和反射光重疊處。鏡面通常是在基座上鍍金膜，而基座同時也包含了載流導線的格局，可以被啟動來產生一個微磁阱。圖1的照片是我們用來產生BEC的原子芯片，圖中可以看到晶片的鍍金表面，產生磁光阱的一對線圈和鏡面夾45°角，通過晶片中間的是引導原子的導線，在晶片表面的正下方（看不見）有四條横向的導線提供了微磁阱來限制原子團沿著原子導管方向。

原子芯片在2001年有一個重大的突破，那就是幾乎是同時由在蒂賓根（Tubingen）的Claus

我们在实验中，从镜面磁光阱镀金表面上

![图1 在Sussex的BEC原子晶片](image)

方4 mm处，可以收集到1×10^11个“Rb原子并冷却到60 μK, 大约有2×10^10个原子被载入由嵌在表面下方的导线所形成的微磁阱中。然后原子以绝热过程被压缩，压缩频率为2π×840 s⁻¹，在轴向为2π×26 s⁻¹，这样会增加原子的密度，进而增加原子的弹性碰撞速率到＞30 s⁻¹，这样的碰撞速率高到足以使有效的蒸发致冷发生。我们利用微强射频(rf)来迫使蒸发冷却，原子被冷却到玻色—爱因斯坦凝聚发生的温度415 nK以下，射频的频率是以对数方式在12.5秒中从13 MHz扫描到600 kHz。凝聚态会在磁表面约200 μm的地方形成，通常大约有22000个原子在凝聚态中。我们是利用吸收成像来观察凝聚态，成像之前会先关断轴向的偏场，让原子沿导管的方向膨胀8 ms。图2是原子云团从高415 nK的热平衡原子团改变到形成BEC的低温原子团。

原子晶片的一个优点是用以产生操控磁场的元件都非常接近原子，这表示限制原子的位能阱可以有很陡峭的梯度，所以量子力学中振荡的摇摆程度就分得很开，这和原子的热能是差不多的。在形成BEC的特殊状况之下，所有的原子都处于位能阱的

![图2 四种不同原子云密度相照，每一原子云团是在冷却到不同的温度后加以释放，膨胀和取吸收影像。BEC开始发生大约415 nK，最右边的尖峰几乎全部是凝聚态。](image)

基态，而其行为也能用量子力学的单一波函数来描述。单一模态的操作对实现同调量子元件是重要的。例如我们之前所考虑二条导管的情况[8]，这个多功能的装置包含二条平行的载流导线在存在横向的偏转场中，只要简单地改变偏转场的强度，就可以分分隔或结合原子团，如此便可能做成一个非常灵敏的原子干涉仪[8]。包含我们在内，能将BEC载在原子晶片上的研究群，都积极地在进行量子干涉仪的实现[2,5-7]。

我们和其他研究群[7,9]，最近在从事研究冷原子云团，BEC态与晶片表面的交互作用，当非常冷的原子团或BEC态被引导到靠近表面时，会破裂成许多碎片，这好像是因为侧限在一微小的调变所造成的，起因则尚未被了解。图3展示了原子团(T = 4 μK)在导体表面10 μm处被释放，进入导管中，这些原子并不是沿著导管的方向自由地膨胀，而是聚集在表面附近所产生位能阱中，我们观察到原子被侧限在这些表面诱导而产生的位能阱中，长到200 ms以上。

以载流导线为基底的原子晶片之所以能快速发展，部分原因是集成电路制造工业的发。我们正在实验室里进行利用商业用的磁性储存材料(最近使用录影带)来产生原子晶片需要的微位能阱，永久磁性材料之所以潜在地用于载流导线，是因为他们可以产生很大的磁场高度且不需要消耗能量，而且没有Johnson噪声或随时间而变的扰动。过去我们曾经展示定期结构的磁性表面，可以当做等效的原子镜子，而这个原子镜子可以被一个外加的小
光學

圖3 破碎的原子雲圍4μK在導管上方15μm的影像

(a)一個固定場B₀加到錄影帶本身產生的場上。
(b)由原子與場的交互作用所產生的等位能柵，這些圖層表示管狀陣列場的極小值，原子能夠在這些地方被侷限或導引。

圖4 在被磁化的錄影帶上正弦式的場與交互作用的等位能柵

磁場來調變[1]。圖4(a)顯示了一個均勻磁場B₀加到一個由磁化錄影帶所產生的正弦磁場，在表面上固定的等位能柵，外加場週期性地抵消錄影帶所產生的場。圖4(b)是由結合上述的場所創造的等位能柵，圖中呈現了一個馬場極小值的週期性陣列。

原子能夠徑向地被侷限性延續二維的磁導管傳導，在我們的實驗上有兩條垂直於導管的導線，用以產生原子在軸向的侷限場。在這些磁晶場中徑向的場力梯度是b=2πB₀/λ，其中λ磁化錄影帶上的波長。即使是使用一般強度的外加磁場，大梯度的場也能做到，因為波長λ在10-100μm的錄影帶是很容易被錄下的，例如B₀=1mT, λ=10μm則b=600Tm⁻¹。最近在將原子侷限於由錄影帶所形成

微磁晶的實驗中，我們觀察到了三體的再結合，這象的產生是需要原子密度高達10¹⁵cm⁻³，再者我們也觀測到在低密度的極限下，侷限維中原子的生命期和磁化表面的距離無關，也和位能障梯度無關。這和我們用載流導線[9]形成的微磁晶所量測到生命期和高度有關的結果是相矛盾的。

利用錄影帶轉錄是製作一維微觀磁化結構較容易實現的方式。然而，利用磁光薄膜將是應用更多功能的方式。我們可以將光強光聚焦用以加熱磁化層，直到局部溫度接近Curie點來在薄膜上寫入侷限陣結構，一個很小的外加磁場則可以使用改變加熱區磁化的方向，掃描顯微可以在薄膜上寫下任意的等位能柵，這些圖層的大小可以小於1μm，薄膜表面的某些部分也可以使用鐫刻方式做成非磁化區，澳大利亞洲(Australia)的Swinburne University of Technology也在進行利用永久磁化物質形成各種圖層來做原子光學[10]。

原子晶片提供了一個製造量子量測儀器的新方式，許多實驗研究群也都在朝著實現這樣的儀器而努力。在不久的將來，我們期待有廣泛的原子光學元件被整合在單一的晶片上，下一步的重要發展是將光纖和微腔體整合在原子晶片上[11]，將我們可能把製作和量子量測單一原子在一個特定量子態上，這可是用做量子邏輯閘的基礎。

參考資料：

本文譯自：