Physics department (Colloquium)

Application of 2D Layered Materials and Bilayer Quantum Computer

Speaker : - Prof. Yuan-Ron Ma 馬遠榮 (東華大學物理系 Department of Physics, National Dong Hwa University)
Time : 2024 / 05 / 03 14:10
Room 36102, 1F, Department of Physics, Science Building
Recently two-dimensional (2D) layered materials have attracted many attentions, because they can be easily and precisely exfoliated to be only a monolayer or few layers due to the weak van der Waal forces between the stacked layers. In fact, the unique and special properties [1-5] of the monolayer and few layers have facilitated the rapid development of electronics and spintronics based on monolayer [1,2], bilayer [3,4], few-layer [5] and so on. Our laboratory at National Dong Hwa University (NDHU), Taiwan has synthesized more than ten 2D layered materials, such as CrI3, VI3, GaTe, SnS2, Bi2S3, NiPS3, and so on, and some interesting results have been already published [6-9]. We use the energy-resolved magnetic circular dichroism (MCD) spectropolarimetry possessing the excellent capability to detect the magneto-optical characteristics of d-d transitions and spin behaviors in applied magnetic fields. The MCD spectra provide a specific signals of two-qubit-entanglement quantum states (TQEQS) (≡|ѱѱ>) of |01> and |10> from a 2D bilayer CrI3 for quantum information. A 2D monolayer CrI3 possessing the ferromagnetic (FM) nature of out-of-plane Ising spin-up (or spin-down) electrons can be considered as a qubit with a quantum state of |ѱ>=|↑>=|0> (or |ѱ>=|↓>=|1>) due to the theory of the Bloch sphere. Hence, an FM or antiferromagnetic (AFM) bilayer CrI3 can be reflected to a two-Bloch-sphere (TBS) model for the two-qubit-entanglement quantum states (TQEQS). For example, the spin-frustration and spin-parallelity possess four quantum signals of the TQEQS (≡|ѱѱ>) of |↑↓>=|01>, |↓↑>=|10>, |↑↑>=|00> and |↓↓>=|11>, respectively, at θB=0, where θB is the angle between the magnetic field and the spin-up.

*Email: ronma@gms.ndhu.edu.tw

1. H. Li, S. Ruan, Y.-J. Zeng, Intrinsic van der Waals magnetic materials from bulk to the 2D limit: new
frontiers of spintronics. Adv. Mater. 2019, 31, 1900065.
2. S. Fan, Q. A. Vu, M. D. Tran, S. Adhikari, Y. H. Lee, Transfer assembly for two-dimensional van der Waals heterostructures. 2D Mater. 2020, 7, 022005.
3. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo- Herrero, X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
4. B. Huang, J. Cenker, X. Zhang, E. L. Ray, T. Song, T. Taniguchi, K. Watanabe, M. A. McGuire, D. Xiao, X. Xu, Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 2020, 15, 212-216.
5. T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. F. Mak, J. Shan, Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303-1308.
6. C. C. S. Maria, P.-H. Wu, D. P. Hasibuan, C. S. Saragih, H. Giap, D. H. Nguyen, Y.-R. Chen, R. A. Patil, D. V. Pham, J.-L. Shen, C.-C. Lai, M.-K. Wu, Y.-R. Ma*, Efficient van der Waals layered gallium telluride-based passive photodetectors for low-power-density sensing
of visible light. J. Mater. Chem. C, 2023, 11, 14316- 14325.
7. V. M. Peheliwa, K.-C. Lu, D. P. Hasibuan, C. S. Saragih, C. C. S. Maria, Y.-R. Chen, R. A. Patil, C.-C. Lai, W.- B. Jian, M.-K. Wu, Y.-R. Ma*, Layer-dependent optical modulation and field-effect-transistor in twodimensional 4H-SnS2 layers. Adv. Opt. Mater. 2023, 11,
8. C. C. S. Maria, R. A. Patil*, D. P. Hasibuan, C. S. Saragih, C.-C. Lai, Y. Liou, Y.-R. Ma*, White-light photodetection enhancement and thin film impediment in Bi2S3 nanorods/thin-films homojunction photodetectors. Appl. Surf. Sci. 2022, 584, 152608.
9. R. A. Patil, H.-W. Tu, M.-H. Jen, J.-J. Lin, C.-C. Wu, C.-C. Yang, D. V. Pham, C.-H. Tsai, C.-C. Lai, Y. Liou, W.-B. Jian, Y.-R. Ma*, Intriguing field-effect-transistor performance of two-dimensional layered and crystalline CrI3. Mater. Today Phys. 2020, 12, 100174.